MATLAB SYSTEM IDENTIFICATION TOOLBOX 7 Guida Utente Pagina 318

  • Scaricare
  • Aggiungi ai miei manuali
  • Stampa
Vedere la pagina 317
4 Nonlinear Black-Box Model Identification
General nlarx Syntax
You can estimate nonlinear ARX models using nlarx. The resulting models
are stored as
idnlarx model objects.
Use the following general syntax to both congure and estimate nonlinear
ARX models:
m = nlarx(data,'na',na,...
'nb',nb,...
'nk',nk,...
Nonlinearity,...
'Property1',Value1,...,
'PropertyN',ValueN)
where data is the estimation data. na, nb,andnk specify the mode l orders
and delays. For more information about model orders, see “Specifying Model
Order and Delays” on page 4-6.
Nonlinearity species the nonlinearity e stimator object as 'sigmoidn et',
'wavenet', 'treepart itio n', 'cus tom net', 'neura lnet ',or'lin ear '.
The property-value pairs specify any
idnlarx model properties that congure
the estimation algorithm. You can enter all model property-value pairs and
top-level algorith m properties as a c omma-separated list in
nlarx.
For multiple inputs a nd outputs,
na, nb,andnk are described in “Options for
Multiple-Input and Multiple-Output ARX Orders” on page 3-64.
You can specify different nonlinearity estimators for different output channels
by setting
Nonlinearity to an object array. For example:
m = nlarx(data,[[2 1; 0 1 ] [2;1] [1;1]],...
[wavenet;sigmoidnet('num',7)])
To specify the same nonlinearity for all outputs, set Nonlinearity to a single
nonlinearity estimator. For example:
m = nlarx(data,[[2 1; 0 1 ] [2;1] [1;1]],...
sigmoidnet('num',7))
4-12
Vedere la pagina 317
1 2 ... 313 314 315 316 317 318 319 320 321 322 323 ... 530 531

Commenti su questo manuale

Nessun commento